首页> 外文OA文献 >Segment and fit thresholding: a new method for image analysis applied to microarray and immunofluorescence data.
【2h】

Segment and fit thresholding: a new method for image analysis applied to microarray and immunofluorescence data.

机译:分段和拟合阈值:用于图像分析的新方法应用于微阵列和免疫荧光数据。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Experiments involving the high-throughput quantification of image data require algorithms for automation. A challenge in the development of such algorithms is to properly interpret signals over a broad range of image characteristics, without the need for manual adjustment of parameters. Here we present a new approach for locating signals in image data, called Segment and Fit Thresholding (SFT). The method assesses statistical characteristics of small segments of the image and determines the best-fit trends between the statistics. Based on the relationships, SFT identifies segments belonging to background regions; analyzes the background to determine optimal thresholds; and analyzes all segments to identify signal pixels. We optimized the initial settings for locating background and signal in antibody microarray and immunofluorescence data and found that SFT performed well over multiple, diverse image characteristics without readjustment of settings. When used for the automated analysis of multicolor, tissue-microarray images, SFT correctly found the overlap of markers with known subcellular localization, and it performed better than a fixed threshold and Otsu\u27s method for selected images. SFT promises to advance the goal of full automation in image analysis.
机译:涉及图像数据高通量量化的实验需要用于自动化的算法。开发这种算法的一个挑战是,在不需要手动调整参数的情况下,在大范围的图像特征上正确地解释信号。在这里,我们提出了一种在图像数据中定位信号的新方法,称为分段和拟合阈值(SFT)。该方法评估图像小片段的统计特征,并确定统计之间的最佳拟合趋势。基于这些关系,SFT识别属于背景区域的片段;分析背景以确定最佳阈值;并分析所有片段以识别信号像素。我们优化了用于在抗体微阵列和免疫荧光数据中定位背景和信号的初始设置,发现SFT在多种多样的图像特征上表现良好,无需重新设置。当用于多色组织微阵列图像的自动分析时,SFT正确地发现了具有已知亚细胞定位的标记物的重叠,并且对于选定的图像,其性能要优于固定阈值和Otsu方法。 SFT有望推动实现图像分析全自动化的目标。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号